MATH 301

INTRODUCTION TO PROOFS

Sina Hazratpour Johns Hopkins University Fall 2021

- Images and pre-images
- Image factorization
- Axiom of choice

Relevant sections of the textbook

- Chapter 3
- Chapter 5

A function $f: X \to Y$ induces a function

 $f_*: \mathcal{P}(X) \to \mathcal{P}(Y)$

defined by

$$f_*(U) = \{y \in Y \mid \exists x \in U (y = f(x))\}$$

for any subset U of X.

A function $f: X \rightarrow Y$ induces a function

 $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$

defined by

$$f_*(U) = \{y \in Y \mid \exists x \in U (y = f(x))\}$$

for any subset U of X. The subset $f_*(S)$ is called the image of U under f.

A function $f: X \to Y$ induces a function

 $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$

defined by

$$f_*(U) = \{y \in Y \mid \exists x \in U (y = f(x))\}$$

for any subset U of X. The subset $f_*(S)$ is called the image of U under f. Note that

$$\mathrm{id}_* = \mathrm{id}_{\mathcal{P}(X)}$$

A function $f: X \to Y$ induces a function

 $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$

defined by

$$f_*(U) = \{y \in Y \mid \exists x \in U (y = f(x))\}$$

for any subset U of X. The subset $f_*(S)$ is called the image of U under f. Note that

 $id_* = id_{\mathcal{P}(X)}$

Proposition

Show that a function $f: X \to Y$ is surjective if and only if $f_*(X) = Y$.

A function $f: X \to Y$ induces a function

 $f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$

defined by

$$f_*(U) = \{y \in Y \mid \exists x \in U (y = f(x))\}$$

for any subset U of X. The subset $f_*(S)$ is called the image of U under f. Note that

 $id_* = id_{\mathcal{P}(X)}$

Proposition

Show that a function $f: X \to Y$ is surjective if and only if $f_*(X) = Y$.

We sometimes denote the set $f_*(X)$ by Im(f).

Suppose $f: X \to Y$ and $g: Y \to Z$ are functions. We prove that

$$g_*\circ f_*=(g\circ f)_*$$
 .

Recall that in order to prove equality of functions we need to use function extensionality.

Suppose $f: X \to Y$ and $g: Y \to Z$ are functions. We prove that

$$g_*\circ f_*=(g\circ f)_*$$
.

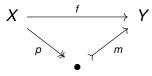
Recall that in order to prove equality of functions we need to use function extensionality.

Suppose T is a subset of Z. Then

$$(g_* \circ f_*) U = g_* \{ y \in Y \mid \exists x \in U (y = f(x)) \} \\= \{ z \in Z \mid \exists y \in Y \exists x \in U (y = f(x) \land z = g(y) \} \\= \{ z \in Z \mid \exists x \in U (z = g(f(x))) \} \\= (g \circ f)_* U$$

Proposition

Every function $f: X \to Y$ factorizes as a surjection followed by an injection, i.e. there are surjection p and injection m such that $f = m \circ p$.



Define *p* to be the assignment $p: X \to \text{Im}(f)$ which takes *x* to f(x). This assignment is well-defined since *f* is well-defined and that $f(x) \in \text{Im}(f)$. Note that *p* is surjective since for any $y \in \text{Im}(f)$ there is some *x* such that f(x) = y by the definition of Im(f) and therefore there is some *x* such that p(x) = f(x) = y.

Define *p* to be the assignment $p: X \to \text{Im}(f)$ which takes *x* to f(x). This assignment is well-defined since *f* is well-defined and that $f(x) \in \text{Im}(f)$. Note that *p* is surjective since for any $y \in \text{Im}(f)$ there is some *x* such that f(x) = y by the definition of Im(f) and therefore there is some *x* such that p(x) = f(x) = y. Define *m* to be the assignment $m: \text{Im}(f) \to Y$ which takes *y* to *y*. This

assignment is well-defined since $Im(f) \subseteq Y$. Note that *m* is injective since m(y) = m(y') implies y = y' simply because m(y) = y for all $y \in Im(f)$.

Define *p* to be the assignment $p: X \to \text{Im}(f)$ which takes *x* to f(x). This assignment is well-defined since *f* is well-defined and that $f(x) \in \text{Im}(f)$. Note that *p* is surjective since for any $y \in \text{Im}(f)$ there is some *x* such that f(x) = y by the definition of Im(f) and therefore there is some *x* such that p(x) = f(x) = y. Define *m* to be the assignment $m: \text{Im}(f) \to Y$ which takes *y* to *y*. This assignment is well-defined since $\text{Im}(f) \subseteq Y$. Note that *m* is injective since

m(y) = m(y') implies y = y' simply because m(y) = y for all $y \in Im(f)$.

Finally we have to show that p and m compose to f. To this end, note that for every $x \in X$

 $m(p(x)) = m(f(x)) = f(x) \,.$

By function extensionality we have that $m \circ p = f$.

Graph surjects to image

Exercise

- **1** Show that the assignment which takes (x, f(x)) to f(x) defines a function from $\overline{\pi_2}$: **Gr** $(f) \rightarrow$ **Im**(f) which is surjective.
- 2 Show that the following diagram of functions commute:

$$\begin{array}{ccc} \mathbf{Gr}(f) & \longmapsto & X \times Y \\ \hline \pi_2 & & & \downarrow \pi_2 \\ \mathbf{Im}(f) & \longmapsto & Y \end{array}$$

Pre-images

A function $f: X \to Y$ induces a function

 $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$

defined by

$$f^{-1}(S) = \{x \in X \mid f(x) \in S\}$$

for any subset S of Y.

Pre-images

A function $f: X \to Y$ induces a function

 $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$

defined by

$$f^{-1}(S) = \{x \in X \mid f(x) \in S\}$$

for any subset S of Y.

The subset $f^{-1}(S)$ is called the pre-image of *S* under *f*.

Pre-images

A function $f: X \to Y$ induces a function

 $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$

defined by

$$f^{-1}(S) = \{x \in X \mid f(x) \in S\}$$

for any subset *S* of *Y*. The subset $f^{-1}(S)$ is called the pre-image of *S* under *f*. Note that

$$\operatorname{id}_X^{-1} = \operatorname{id}_{\mathcal{P}(X)}$$

Injections and subsingletons

Definition

A set U is said to be a subsingleton if it is a subset of the one-element set 1.

Injections and subsingletons

Definition

A set U is said to be a subsingleton if it is a subset of the one-element set 1.

Proposition

A function $f: X \to Y$ is injective if and only if for every $y \in Y$ the fibres $f^{-1}(y)$ are all subsingletons.

Suppose $f: X \to Y$ and $g: Y \to Z$ are functions. We prove that

$$f^{-1} \circ g^{-1} = (g \circ f)^{-1}$$
 .

Recall that in order to prove equality of functions we need to use function extensionality.

Suppose $f: X \to Y$ and $g: Y \to Z$ are functions. We prove that

$$f^{-1} \circ g^{-1} = (g \circ f)^{-1}$$
 .

Recall that in order to prove equality of functions we need to use function extensionality.

Suppose T is a subset of Z. Then

$$(f^{-1} \circ g^{-1})T = f^{-1} \{ y \in Y \mid g(y) \in T \}$$

= $\{ x \in X \mid f(x) \in \{ y \in Y \mid g(y) \in T \} \}$
= $\{ x \in X \mid g(f(x)) \in T \}$
= $(g \circ f)^{-1}T$

Fibres

Definition

For a function $f: X \rightarrow Y$, and an element $y \in Y$, the subset

$$f^{-1}(y) = \{x \in X \mid f(x) = y\}$$

of X is called the fibre of f at y and also the pre-image of y under f. Although, technically incorrect, people write $f^{-1}(y)$ instead of $f^{-1}(\{y\})$.

Example

Consider the function $\lfloor - \rfloor : \mathbb{R} \to \mathbb{Z}$ which takes a real number to the greatest integer less than it. What are the fibres

[−]⁻¹(0)?

•
$$\lfloor - \rfloor^{-1}(\lfloor \pi \rfloor)$$
?

The operation of taking fibres of a function is itself a function. More specifically, given a function *f*, taking fibres of *f* at different elements $y \in Y$ as a function is equal to the composite

$$Y \xrightarrow{\{-\}} \mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X),$$

that is for all $y \in Y$,

 $f^{-1}(y) = f^{-1}\{y\}$

The operation of taking fibres of a function is itself a function. More specifically, given a function f, taking fibres of f at different elements $y \in Y$ as a function is equal to the composite

$$Y \xrightarrow{\{-\}} \mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X),$$

that is for all $y \in Y$,

$$f^{-1}(y) = f^{-1}\{y\}$$

Exercise

Consider the family $\{f^{-1}(y) \mid y \in Y\}$. Show that all members of this family are mutually disjoint, and that their union is fact *X*.

$$\bigsqcup_{y \in Y} f^{-1}(y) \cong \bigcup_{y \in Y} f^{-1}(y) = X$$

As the last exercise suggests, we can associate to every function a family of sets given by fibres of that function at different elements of the codomain.

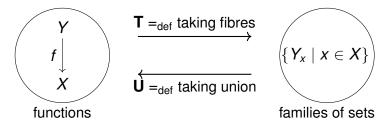
As the last exercise suggests, we can associate to every function a family of sets given by fibres of that function at different elements of the codomain.

Interestingly, we also have the converse association: to a family $\{Y_x \mid x \in X\}$ we associate a function as follows: let the domain to be the disjoint union $\bigsqcup_{x \in X} Y_x$ and let the codomain be X. The associated function $p: \{Y_x \mid x \in X\} \to X$ takes an element $in(x) \in \bigsqcup_{x \in X} Y_x$ to $x \in X$.

As the last exercise suggests, we can associate to every function a family of sets given by fibres of that function at different elements of the codomain.

Interestingly, we also have the converse association: to a family $\{Y_x \mid x \in X\}$ we associate a function as follows: let the domain to be the disjoint union $\bigsqcup_{x \in X} Y_x$ and let the codomain be *X*. The associated function

 $p: \{Y_x \mid x \in X\} \to X \text{ takes an element in}(x) \in \bigsqcup_{x \in X} Y_x \text{ to } x \in X.$



Factorization of function via quotient

Recall from problem 5 of homework #4 that for each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$.

Factorization of function via quotient

Recall from problem 5 of homework #4 that for each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$X/\sim =_{\mathsf{def}} \{ [x]_{\sim} \mid x \in X \}$$

Factorization of function via quotient

Recall from problem 5 of homework #4 that for each equivalence \sim on a set *X* we can construct a set *X*/ \sim whose elements are equivalence classes

$$[x]_{\sim} = \{y \in X \mid x \sim y\}$$

for all $x \in X$. Now collect all such equivalence classes into one set:

$$X/\sim =_{\mathsf{def}} \{ [x]_{\sim} \mid x \in X \}$$

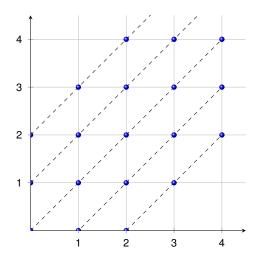
We call the set X / \sim the quotient of X by equivalence relation \sim .

Example of quotient by an equivalence relation

Consider the relation \sim on $\mathbb{N}\times\mathbb{N}$ where

$$(m, n) \sim (m', n') \Leftrightarrow m + n' = n + m'$$
.

For instance, the equivalence class [(0, 0)] is the set $\{(0, 0), (1, 1), (2, 2), ...\}$.



We can define the operation of addition on $\mathbb{N} \times \mathbb{N} / \sim$ by an assignment + $_{\sim} : \mathbb{N} \times \mathbb{N} / \sim \times \mathbb{N} \times \mathbb{N} / \sim \to \mathbb{N} \times \mathbb{N} / \sim$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* + *m*', *n* + *n*')].

Exercise

Show that the assignment $+_{\sim}$ is well-defined, i.e. it defines a function.

Exercise

Show that the quotient $\mathbb{N} \times \mathbb{N} / \sim$ is isomorphic to the set \mathbb{Z} of integers. Does your isomorphism preserve addition?

We can define the operation of addition on $\mathbb{N} \times \mathbb{N} / \sim$ by an assignment + $_{\sim} : \mathbb{N} \times \mathbb{N} / \sim \times \mathbb{N} \times \mathbb{N} / \sim \to \mathbb{N} \times \mathbb{N} / \sim$ which assigns to the pair ([(*m*, *n*)], [(*m*', *n*')]) the class [(*m* + *m*', *n* + *n*')].

Exercise

Show that the assignment $+_{\sim}$ is well-defined, i.e. it defines a function.

Exercise

Show that the quotient $\mathbb{N} \times \mathbb{N} / \sim$ is isomorphic to the set \mathbb{Z} of integers. Does your isomorphism preserve addition?

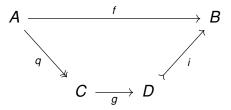
Exercise

Define multiplication on the quotient $\mathbb{N} \times \mathbb{N} / \sim$. Does your isomorphism preserve addition?

Image factorization

Proposition

Suppose $f: A \rightarrow B$ is a function. We can factor f into three functions



that is $f = i \circ g \circ q$, where q is a surjection, g is a bijection, and i is an injection.

We have to construct the sets C, D and a surjection q, a bijection g and an injection i.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. Clearly, *q* is surjective and *i* is injective.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. Clearly, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. Clearly, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *g* is well-defined, since if [x] = [y] then $x \sim y$ and therefore, by the definition of \sim , we have f(x) = f(y).

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. Clearly, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *g* is well-defined, since if [x] = [y] then $x \sim y$ and therefore, by the definition of \sim , we have f(x) = f(y). We now show that *g* is a bijection.

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define *C* to be A/\sim , and *D* to be the image $f_*(A)$ of *A* under *f*. We also define *q* to be the obvious quotient map and *i* to be the obvious inclusion. Clearly, *q* is surjective and *i* is injective. We define *g* to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *g* is well-defined, since if [x] = [y] then $x \sim y$ and therefore, by the definition of \sim , we have f(x) = f(y). We now show that *g* is a bijection. *g* is injective since for every $x, y \in A$, if g([x]) = g([y]) then f(x) = f(y) and therefore, [x] = [y].

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

 $x \sim y \Leftrightarrow f(x) = f(y)$.

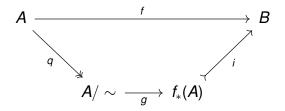
Now we define C to be A/\sim , and D to be the image $f_*(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. Clearly, q is surjective and i is injective. We define q to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *q* is well-defined, since if [x] = [y] then $x \sim y$ and therefore, by the definition of \sim , we have f(x) = f(y). We now show that g is a bijection. g is injective since for every $x, y \in A$, if g([x]) = g([y]) then f(x) = f(y) and therefore, [x] = [y]. Also, g is surjective: given b in $f_*(A)$ there is some $a \in A$ such that b = f(a) = q([a]).

We have to construct the sets *C*, *D* and a surjection *q*, a bijection *g* and an injection *i*. We define an equivalence relation \sim on *A* by

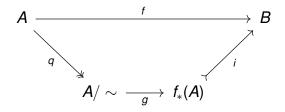
 $x \sim y \Leftrightarrow f(x) = f(y)$.

Now we define C to be A/\sim , and D to be the image $f_*(A)$ of A under f. We also define q to be the obvious quotient map and i to be the obvious inclusion. Clearly, q is surjective and i is injective. We define q to be the assignment which takes an equivalence class [x] to the element $f(x) \in B$. Note that *q* is well-defined, since if [x] = [y] then $x \sim y$ and therefore, by the definition of \sim , we have f(x) = f(y). We now show that g is a bijection. g is injective since for every $x, y \in A$, if g([x]) = g([y]) then f(x) = f(y) and therefore, [x] = [y]. Also, g is surjective: given b in $f_*(A)$ there is some $a \in A$ such that b = f(a) = q([a]).

Our factorization diagram becomes



Our factorization diagram becomes



In fact, $g \circ q = p \colon X \to \text{Im}(f)$.

Suppose X and Y are sets. We can define a new set consisting of all the functions from X to Y. We denote this set by Y^X . Explicitly,

$$Y^X = \{f \colon X \to Y\} \cong \{R \subset X \times Y \mid R \text{ is a functional relation}\}$$

Exercise

Suppose *X* is a finite set with *m* elements and Suppose *Y* is a finite set with *n* elements. Then the set Y^X has n^m elements.

The set of functions behaves like exponentials

Proposition

Suppose X, Y, Z are sets. We have

- *X*[∅] ≅ 1
- $\emptyset^X \cong 1$ if and only if $X = \emptyset$. In particular $\emptyset^{\emptyset} \cong 1$.
- $(X^{Y})^{Z} \cong X^{Y \times Z}$.
- $X^{Y+Z} \cong X^Y \times X^Z$

Let Ω be a set with two elements, for instance $\{\top, \bot\}$. We show that

$$\Omega^X \cong \mathcal{P}(X)$$

that is the power set of X is isomorphic to the set of functions from X to Ω .

Let Ω be a set with two elements, for instance $\{\top, \bot\}$. We show that

$$\Omega^X \cong \mathcal{P}(X)$$

that is the power set of *X* is isomorphic to the set of functions from *X* to Ω . To this end we construct two functions *f* and *g* and prove that they are inverse of each other. Let Ω be a set with two elements, for instance $\{\top, \bot\}$. We show that

$$\Omega^X \cong \mathcal{P}(X)$$

that is the power set of *X* is isomorphic to the set of functions from *X* to Ω . To this end we construct two functions *f* and *g* and prove that they are inverse of each other. We have functions $\lambda(\varphi : \Omega^X).\{x \in X \mid \varphi(x) = \top\}: \Omega^X \to \mathcal{P}(X), \text{ and } \lambda(S : \mathcal{P}(X)).\chi_S: \mathcal{P}(X) \to \Omega^X$ where, we recall, that χ_S is the characteristic function of $S \subset X$.

Let $\{X_i \mid i \in I\}$ be a family of sets.

Let $\{X_i \mid i \in I\}$ be a family of sets. Define the set $\prod_{i \in I} X_i$ to be

$$\{h\colon I\to \bigcup_{i\in I}X_i\mid \forall i\,(h(i)\in X_i)\}$$

Let $\{X_i \mid i \in I\}$ be a family of sets. Define the set $\prod_{i \in I} X_i$ to be

$$\{h\colon I\to \bigcup_{i\in I}X_i\mid \forall i\,(h(i)\in X_i)\}$$

Note that if *I* is a finite set, say $I = \{1, 2, \dots, n\}$ then

$$\prod_{i\in I} X_i \cong X_1 \times X_2 \times \cdots \times X_n$$

Let $\{X_i \mid i \in I\}$ be a family of sets. Define the set $\prod_{i \in I} X_i$ to be

$$\{h\colon I\to \bigcup_{i\in I}X_i\mid\forall i\,(h(i)\in X_i)\}$$

Note that if *I* is a finite set, say $I = \{1, 2, \dots, n\}$ then

$$\prod_{i\in I} X_i \cong X_1 \times X_2 \times \cdots \times X_n$$

In case where *I* is a finite set, if each X_i is inhabited then the cartesian product $\prod_{i \in I} X_i$ is also inhabited.

Let $\{X_i \mid i \in I\}$ be a family of sets. Define the set $\prod_{i \in I} X_i$ to be

$$\{h\colon I\to \bigcup_{i\in I}X_i\mid\forall i\,(h(i)\in X_i)\}$$

Note that if *I* is a finite set, say $I = \{1, 2, \dots, n\}$ then

$$\prod_{i\in I} X_i \cong X_1 \times X_2 \times \cdots \times X_n$$

In case where *I* is a finite set, if each X_i is inhabited then the cartesian product $\prod_{i \in I} X_i$ is also inhabited. But we cannot prove this for a general *I*.

Axiom of choice

Axiom of Choice (AC) asserts that the set $\prod_{i \in I} X_i$ is inhabited for *any* indexing set *I* and any family ($X_i | i \in I$) of *inhabited* sets.

Warning

The axiom of choice is highly non-constructive: if a proof of a result that does not use the axiom of choice is available, it usually provides more information than a proof of the same result that does use the axiom of choice.

Proposition

The axiom of choice is equivalent to the statement that for any sets X and Y and any formula p(x, y) with free variables $x \in X$ and $y \in Y$, the sentence

$$\forall x \in X \exists y \in Y \, p(x, y) \Rightarrow \exists (f \colon X \to Y) \, \forall x \in X, \, p(x, f(x)) \tag{1}$$

holds.

Proof. Assume axiom of choice. Let X and Y be arbitrary sets and p(x, y)any formula with free variables $x \in X$ and $y \in Y$. For each $x \in X$, define $Y_x = \{y \in Y \mid p(x, y)\}$. Note that Y_x is inhabited for each $x \in X$ by the assumption $\forall x \in X, \exists y \in Y, p(x, y)$. By the axiom of choice there exists a function $h: X \to [] Y_x$ such that $h(x) \in Y_x$ for all $x \in X$. We compose the $x \in X$ function h with the inclusion $\bigcup_{x \in X} Y_x \rightarrow Y$, which we get from the fact that $Y_x \subset Y$ for each $x \in X$, to obtain a function $f: X \to Y$. But then p(x, f(x)) = p(x, h(x)) is true for each $x \in X$ by definition of the sets Y_x .

Conversely, suppose that we have a family $(X_i | i \in I)$ of inhabited sets. Consider the cartesian product $\prod_{i \in I} X_i$. We want to show that this product is inhabited. Define

$$p(i, x) =_{\mathsf{def}} (x \in X_i)$$

Now, we apply the sentence (1) to the sets I, $\bigcup_{i \in I} X_i$ and the formula p(i, x) just defined: we find a function $f: I \to \bigcup_{i \in I} X_i$ such that p(i, f(i)) for all $i \in I$. But, by definition of p(i, x), we conclude that $f(i) \in X_i$ for all $i \in I$. Hence, f is a member of $\prod_{i \in I} X_i$. \Box

Given a function $p: Y \to X$, consider the associated family $\{Y_x \mid x \in X\}$ of sets obtained by taking fibres of p at different elements of x.

Given a function $p: Y \to X$, consider the associated family $\{Y_x \mid x \in X\}$ of sets obtained by taking fibres of p at different elements of x.

Lemma

A maps $p: Y \to X$ is surjective if and only if the fibres Y_x are inhabited for all $x \in X$.

Given a function $p: Y \to X$, consider the associated family $\{Y_x \mid x \in X\}$ of sets obtained by taking fibres of p at different elements of x.

Lemma

A maps $p: Y \to X$ is surjective if and only if the fibres Y_x are inhabited for all $x \in X$.

Lemma

An element of $\prod_{x \in X} Y_x$ is the same thing as a section of $p: Y \to X$.

Proposition

Axiom of choice is equivalent to the statement that every surjection has a section.

Proof.

Proposition

Axiom of choice is equivalent to the statement that every surjection has a section.

Proof.

Assume AC. Let $p: Y \to X$ be a surjection. Therefore all the fibres Y_x are inhabited. By AC, the product $\prod_{x \in X} Y_x$ is inhabited. Hence, by the last lemma above, p has a section.

Proposition

Axiom of choice is equivalent to the statement that every surjection has a section.

Proof.

Conversely, suppose that every surjection has a section. Let $\{Y_x \mid x \in X\}$ be family of sets where the set Y_x is inhabited for every $x \in X$. Consider the associated function $\sqcup_{x \in X} Y_x \to X$. Note that this map is surjective by our assumption and the first lemma above. Hence, it has a section which is the same thing as an element of $\prod_{x \in X} Y_x$. Therefore AC holds.

Theorem (Diaconescu, Goodman-Myhill)

The axiom of choice implies the law of excluded middle.

Cantors' theorem: A < P(A)

Lemma

If a function σ : $A \rightarrow B^A$ is surjective then every function f: $B \rightarrow B$ has a fixed point.

Proof.

Because σ is a surjection, there is $a \in A$ such that $\sigma(a) = \lambda x : A \cdot f(\sigma(x)(x))$, but then $\sigma(a)(a) = f(\sigma(a)(a)$.

Corollary

There is no surjection $A \rightarrow P(A)$.

Let's associate to each *finite set* X a number card(X), called the "cardinality" of X, which measures how many (distinct) elements the set X has. We then have

• $\operatorname{card}(X + Y) = \operatorname{card}(X) + \operatorname{card}(Y)$ and

•
$$card(X \times Y) = card(X) \times card(Y)$$
.

Let's associate to each *finite set* X a number card(X), called the "cardinality" of X, which measures how many (distinct) elements the set X has. We then have

- $\operatorname{card}(X + Y) = \operatorname{card}(X) + \operatorname{card}(Y)$ and
- $\operatorname{card}(X \times Y) = \operatorname{card}(X) \times \operatorname{card}(Y)$.

More generally, for any finite set *I* and a family of finite sets $\{X_i \mid i \in I\}$, we have

•
$$\operatorname{card}(\bigsqcup_{i \in I} X_i) = \sum_{i \in I} \operatorname{card}(X_i)$$
 and

• $\operatorname{card}(\prod_{i\in I} X_i) = \prod_{i\in I} \operatorname{card}(X_i)$

Questions

Thanks for your attention!